3.1631 \(\int \frac {1}{(a+\frac {b}{x})^2 x^7} \, dx\)

Optimal. Leaf size=84 \[ \frac {5 a^4 \log (x)}{b^6}-\frac {5 a^4 \log (a x+b)}{b^6}+\frac {a^4}{b^5 (a x+b)}+\frac {4 a^3}{b^5 x}-\frac {3 a^2}{2 b^4 x^2}+\frac {2 a}{3 b^3 x^3}-\frac {1}{4 b^2 x^4} \]

[Out]

-1/4/b^2/x^4+2/3*a/b^3/x^3-3/2*a^2/b^4/x^2+4*a^3/b^5/x+a^4/b^5/(a*x+b)+5*a^4*ln(x)/b^6-5*a^4*ln(a*x+b)/b^6

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 84, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {263, 44} \[ -\frac {3 a^2}{2 b^4 x^2}+\frac {a^4}{b^5 (a x+b)}+\frac {4 a^3}{b^5 x}+\frac {5 a^4 \log (x)}{b^6}-\frac {5 a^4 \log (a x+b)}{b^6}+\frac {2 a}{3 b^3 x^3}-\frac {1}{4 b^2 x^4} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b/x)^2*x^7),x]

[Out]

-1/(4*b^2*x^4) + (2*a)/(3*b^3*x^3) - (3*a^2)/(2*b^4*x^2) + (4*a^3)/(b^5*x) + a^4/(b^5*(b + a*x)) + (5*a^4*Log[
x])/b^6 - (5*a^4*Log[b + a*x])/b^6

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rule 263

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(m + n*p)*(b + a/x^n)^p, x] /; FreeQ[{a, b, m
, n}, x] && IntegerQ[p] && NegQ[n]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+\frac {b}{x}\right )^2 x^7} \, dx &=\int \frac {1}{x^5 (b+a x)^2} \, dx\\ &=\int \left (\frac {1}{b^2 x^5}-\frac {2 a}{b^3 x^4}+\frac {3 a^2}{b^4 x^3}-\frac {4 a^3}{b^5 x^2}+\frac {5 a^4}{b^6 x}-\frac {a^5}{b^5 (b+a x)^2}-\frac {5 a^5}{b^6 (b+a x)}\right ) \, dx\\ &=-\frac {1}{4 b^2 x^4}+\frac {2 a}{3 b^3 x^3}-\frac {3 a^2}{2 b^4 x^2}+\frac {4 a^3}{b^5 x}+\frac {a^4}{b^5 (b+a x)}+\frac {5 a^4 \log (x)}{b^6}-\frac {5 a^4 \log (b+a x)}{b^6}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 79, normalized size = 0.94 \[ \frac {-60 a^4 \log (a x+b)+60 a^4 \log (x)+\frac {b \left (60 a^4 x^4+30 a^3 b x^3-10 a^2 b^2 x^2+5 a b^3 x-3 b^4\right )}{x^4 (a x+b)}}{12 b^6} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b/x)^2*x^7),x]

[Out]

((b*(-3*b^4 + 5*a*b^3*x - 10*a^2*b^2*x^2 + 30*a^3*b*x^3 + 60*a^4*x^4))/(x^4*(b + a*x)) + 60*a^4*Log[x] - 60*a^
4*Log[b + a*x])/(12*b^6)

________________________________________________________________________________________

fricas [A]  time = 1.01, size = 108, normalized size = 1.29 \[ \frac {60 \, a^{4} b x^{4} + 30 \, a^{3} b^{2} x^{3} - 10 \, a^{2} b^{3} x^{2} + 5 \, a b^{4} x - 3 \, b^{5} - 60 \, {\left (a^{5} x^{5} + a^{4} b x^{4}\right )} \log \left (a x + b\right ) + 60 \, {\left (a^{5} x^{5} + a^{4} b x^{4}\right )} \log \relax (x)}{12 \, {\left (a b^{6} x^{5} + b^{7} x^{4}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x)^2/x^7,x, algorithm="fricas")

[Out]

1/12*(60*a^4*b*x^4 + 30*a^3*b^2*x^3 - 10*a^2*b^3*x^2 + 5*a*b^4*x - 3*b^5 - 60*(a^5*x^5 + a^4*b*x^4)*log(a*x +
b) + 60*(a^5*x^5 + a^4*b*x^4)*log(x))/(a*b^6*x^5 + b^7*x^4)

________________________________________________________________________________________

giac [A]  time = 0.21, size = 86, normalized size = 1.02 \[ -\frac {5 \, a^{4} \log \left ({\left | a x + b \right |}\right )}{b^{6}} + \frac {5 \, a^{4} \log \left ({\left | x \right |}\right )}{b^{6}} + \frac {60 \, a^{4} b x^{4} + 30 \, a^{3} b^{2} x^{3} - 10 \, a^{2} b^{3} x^{2} + 5 \, a b^{4} x - 3 \, b^{5}}{12 \, {\left (a x + b\right )} b^{6} x^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x)^2/x^7,x, algorithm="giac")

[Out]

-5*a^4*log(abs(a*x + b))/b^6 + 5*a^4*log(abs(x))/b^6 + 1/12*(60*a^4*b*x^4 + 30*a^3*b^2*x^3 - 10*a^2*b^3*x^2 +
5*a*b^4*x - 3*b^5)/((a*x + b)*b^6*x^4)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 79, normalized size = 0.94 \[ \frac {a^{4}}{\left (a x +b \right ) b^{5}}+\frac {5 a^{4} \ln \relax (x )}{b^{6}}-\frac {5 a^{4} \ln \left (a x +b \right )}{b^{6}}+\frac {4 a^{3}}{b^{5} x}-\frac {3 a^{2}}{2 b^{4} x^{2}}+\frac {2 a}{3 b^{3} x^{3}}-\frac {1}{4 b^{2} x^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b/x)^2/x^7,x)

[Out]

-1/4/b^2/x^4+2/3*a/b^3/x^3-3/2*a^2/b^4/x^2+4*a^3/b^5/x+a^4/b^5/(a*x+b)+5*a^4*ln(x)/b^6-5*a^4*ln(a*x+b)/b^6

________________________________________________________________________________________

maxima [A]  time = 1.01, size = 86, normalized size = 1.02 \[ \frac {60 \, a^{4} x^{4} + 30 \, a^{3} b x^{3} - 10 \, a^{2} b^{2} x^{2} + 5 \, a b^{3} x - 3 \, b^{4}}{12 \, {\left (a b^{5} x^{5} + b^{6} x^{4}\right )}} - \frac {5 \, a^{4} \log \left (a x + b\right )}{b^{6}} + \frac {5 \, a^{4} \log \relax (x)}{b^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x)^2/x^7,x, algorithm="maxima")

[Out]

1/12*(60*a^4*x^4 + 30*a^3*b*x^3 - 10*a^2*b^2*x^2 + 5*a*b^3*x - 3*b^4)/(a*b^5*x^5 + b^6*x^4) - 5*a^4*log(a*x +
b)/b^6 + 5*a^4*log(x)/b^6

________________________________________________________________________________________

mupad [B]  time = 1.10, size = 79, normalized size = 0.94 \[ \frac {\frac {5\,a^3\,x^3}{2\,b^4}-\frac {5\,a^2\,x^2}{6\,b^3}-\frac {1}{4\,b}+\frac {5\,a^4\,x^4}{b^5}+\frac {5\,a\,x}{12\,b^2}}{a\,x^5+b\,x^4}-\frac {10\,a^4\,\mathrm {atanh}\left (\frac {2\,a\,x}{b}+1\right )}{b^6} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^7*(a + b/x)^2),x)

[Out]

((5*a^3*x^3)/(2*b^4) - (5*a^2*x^2)/(6*b^3) - 1/(4*b) + (5*a^4*x^4)/b^5 + (5*a*x)/(12*b^2))/(a*x^5 + b*x^4) - (
10*a^4*atanh((2*a*x)/b + 1))/b^6

________________________________________________________________________________________

sympy [A]  time = 0.37, size = 80, normalized size = 0.95 \[ \frac {5 a^{4} \left (\log {\relax (x )} - \log {\left (x + \frac {b}{a} \right )}\right )}{b^{6}} + \frac {60 a^{4} x^{4} + 30 a^{3} b x^{3} - 10 a^{2} b^{2} x^{2} + 5 a b^{3} x - 3 b^{4}}{12 a b^{5} x^{5} + 12 b^{6} x^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x)**2/x**7,x)

[Out]

5*a**4*(log(x) - log(x + b/a))/b**6 + (60*a**4*x**4 + 30*a**3*b*x**3 - 10*a**2*b**2*x**2 + 5*a*b**3*x - 3*b**4
)/(12*a*b**5*x**5 + 12*b**6*x**4)

________________________________________________________________________________________